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Motivation
From Image Processing

• Certain 2-D geometric patterns 
transform to dots in a 2-D 
spatial frequency plane*

• Time-frequency distributions 
contain “geometric patterns” 
due to harmonic  content

– Possible use
 Pitch estimation 
 Noise reduction 
 Multi-speaker separation

*From  R.L. DeValois and K.K. DeValois, Spatial 
Vision, Oxford University Press, 1988.
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2-D Grating Patterns

Narrowband Spectrogram
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OUTLINE 
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2-D Spectrogram Model 
Inspiration from Image Processing

• 2-D sine on a pedestal*: Zero degree rotation

• 2-D sine on a pedestal*: 45 degree rotation

F

F

From J.D. Gaskill, Linear Systems, Fourier Transforms, and Optics, John Wiley and Sons, New York, NY, 1978.

Distance of 2-D 
impulses from 
origin varies 
inversely with sine 
frequency

Angle of  2-D 
impulses w/r axes 
proportional to 
extent of sine 
rotation
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2-D Spectrogram Model 
Short-Space 2-D Sine

• Harmonic line structure of the narrowband spectrogram is modeled over a 
small region by a 2-D sine function sitting on a flat pedestal of unity

• 2-D window is applied to extract a short-time segment and 2-D Fourier 
transform is then computed
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Steady 
Pitch

Changing 
Pitch

2-D Impulses are 
smeared by 2-D 
windowing 

Distance from 
origin of smeared 
impulses varies 
inversely with pitch

Angle of impulses 
from vertical axis 
varies with pitch 
dynamics
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2-D Processing 
Example

• 2-D analysis of narrowband spectrogram of all-voiced female speech

Time (s)

(a)

Time (s)

(a)

Henceforth, refer to 2-D mapping as the “Grating Compresssion Transform” (GCT) to 
highlight mapping “gratings” to concentrated “dots”

DC region 
removed

Speech 

Spectrogram 

2-D Fourier 
Transforms

2-D (Hamming) 
window dimension: 

100 1000ms Hz≈ ×
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2-D Processing 
Example with Noise

• 2-D analysis of all-voiced female speech in noise
– GCT without and with additive white Gaussian noise at average SNR of ~3 dB

• Energy concentration of GCT is typically preserved at roughly the same 
location as for the clean case  

– However, when noise dominates so that little harmonic structure remains within the 2-D 
window, energy concentration deteriorates, as in the vicinity of 0.95 s and 2000 Hz

Time (s)

(a)

Time (s)

(a)

Time (s)

(b)

Time (s)

(b)

Speech 

Spectrogram 

2-D Fourier 
Transforms

Clean Noisy
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OUTLINE 

• 2-D Spectrogram Model and Mapping

• Application to Pitch Estimation

• Application to Formant Estimation

• Extension to Alternate Time-Frequency Distributions

• Conclusions and Directions
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Pitch Estimation 
GCT-Based Approach

• GCT of speech examples motivate a 
simple pitch estimator

– Pitch estimate is reciprocal to the 
distance from the origin to the 
maximum value in the GCT

• Pitch rate of change is proportional to 
angle of GCT peak from vertical axis

GCTSpeech

Find location of
maximum value

Compute distance D 
from GCT origin 
to maximum value

Compute 
Reciprocal of D 

Pitch

GCTSpeech

Find location of
maximum value

Compute distance D 
from GCT origin 
to maximum value

Compute 
Reciprocal of D 

Pitch

1ω

2ω

1ω

2ω

/( ) sfPitch Hz D= D

Sampling 
frequency
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GCT-Based Pitch Estimation
Example

• GCT-based estimator over time
– 2-D analysis window slid along 

the speech spectrogram at a 10-
ms frame interval at low-
frequency location

– Relatively robust in noise, out-
performing a sinewave-based 
pitch estimator

GCT-Based Estimator

Sinewave-Based Estimator

Solid: Clean Speech

Dashed: 3 dB SNR

Time (s)

Freq (Hz)
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GCT-Based Pitch Estimation
Performance

• GCT-based estimator

– 2-D analysis window slid along 
the speech spectrogram at a 10-
ms frame interval at a low-
frequency location given by the 
2-D window in previous slide 

– Average magnitude difference 
measured between pitch-
contour estimates with and 
without white Gaussian noise 
for both the GCT- and sinewave-
based estimators

Performance  Measurements

Average magnitude error (in dB) in GCT-
and sine-wave-based pitch contour estimates 
for clean and noisy all-voiced passages. The 
two passages “Why were you away a year 
Roy?” and “Nanny may know my meaning.”
from two male and two female speakers were 
used under noise conditions 9 dB and 3 dB 
average signal-to-noise ratio.

GCT

SINE

FEMALES MALES

9dB 3dB9dB 3dB

5.8 40.5 2.6 12.8

0.5 6.7 0.9 6.7GCT

SINE

FEMALES MALES

9dB 3dB9dB 3dB

5.8 40.5 2.6 12.8

0.5 6.7 0.9 6.7
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Pitch Estimation
Multi-resolution properties

• Pitch in the 2-D plane

– Pitch can be obtained anywhere 
in the 2-D plane

– “Wavelet-like tiling” of 2-D 
window found to give the most 
consistent estimate

 Reflects increase pitch FM with 
increasing frequency

Three pitch contours

Window A: Dashed Green

Window B: Dashed-Dot Red

Window C: Solid Blue

A
B

C
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Two-Speaker Pitch Estimation

• Sum of two speakers has 
spectrogram with  two harmonic 
sets

• GCT gives two pairs of dots, one 
pair for each speaker

– All-voiced example (male + female)

Time

Frequency

Speaker A

Speaker B

2-D Analysis Window

Time

Frequency

Speaker A

Speaker B

2-D Analysis Window

• Blind use of one-speaker pitch 
estimator on two-speaker signal 

Maximun
of GCT 
latches on 
to speaker 
with 
(locally) 
largest 
energy

GCT-Based Estimator

Sine-Wave-Based Estimator
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OUTLINE 

• 2-D Spectrogram Model and Mapping

• Application to Pitch Estimation

• Application to Formant Estimation

• Extension to Alternate Time-Frequency Distributions

• Conclusions and Directions
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Formant Estimation
The High-Pitched Problem

Synthesized vowel /ah/ with 330-Hz 
pitch.  Speech spectrum generated 
from short-time Fourier analysis with a 
20-ms Hamming window.

Collection of harmonic samples 
from pitch sweep ranging from 
305~355 Hz.  Contrast to f0 = 
330 Hz shown in Figure 1.

MIT Lincoln Laboratory
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2-D Framework
Exploiting Changing Pitch in Formant Estimation

a) Schematic of changing and fixed f0 across a steady vowel in a STFT; (b) 
Averaging of harmonic samples to a single 1-D frequency axis; (c) Localized 
spectrotemporal region from (a); (d) Mapping of source-filter speech components 
in the GCT from (c).
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Spectral Estimation: Results
Average Percent Formant Error

Females
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• Methods
1. Single STFT slice 
2. Cepstral liftering
3. Proposed method
4. Spectral slice averaging

• Relative gains (method 1) for 
[F1, F2, F3] via proposed:

– Females: [61%, 61%, 73%]
– Males: [62%, 82%, 87%]

• Gains for F3 greatest (wider 
harmonic sampling)

• Individual formant scores 
across vowels also 
consistent

Males
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Spectral Estimation: Results
Average MSE

Average MSE (Females)
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• Methods
1. Single STFT slice
2. Cepstral liftering
3. Proposed method
4. Spectral slice averaging

• Results are consistent with 
formant frequency 
estimation

– Method 3 outperforms 
others for all vowels

• Data not shown:
– Consistent results with 

children’s formants

Average MSE (Males)
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Speaker Recognition: Methods

• Data set - male and female subsets of TIMIT corpus

• Baseline system
– Mel-cepstrum feature extraction with 20 ms. window and 10 

ms frame interval + delta features
– Adaptive Gaussian Mixture Modeling

 128 mixture components
 Universal background model

• System modifications in feature extraction
– Short-time analysis using 10 ms frame window and 2 ms 

frame interval
– Compute average of spectral slices spanning ~30 ms
– Derived spectra are used for computing standard mel-

cepstrum + deltas

MIT Lincoln Laboratory
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Speaker Recognition: Results

• Equal error rate (EER)

• Absolute EER reduction in 
females 2.26% (not yet 
significant)

1.55% < 2.15% < 3.30%3.12%< 4.41% < 5.64%Females

1.53% < 2.15% < 2.80%1.86%< 2.45% < 3.39% Males

Proposed (EER)Baseline (EER)

1.55% < 2.15% < 3.30%3.12%< 4.41% < 5.64%Females

1.53% < 2.15% < 2.80%1.86%< 2.45% < 3.39% Males

Proposed (EER)Baseline (EER)
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Limitation of the Spectrogram
Observations 

• Two curious effects are seen:
– Frequency tracks moving in the 

wrong direct, e.g., up rather 
than down and

– Crossing tracks, i.e., tracks 
moving up and down 
simultaneously. 

• The problem is that the basis 
functions of the Fourier 
transform, stationary sinusoids, 
cannot resolve the speech 
harmonics which have rapid 
frequency modulation and are 
closely spaced in frequency. 

– This lack of resolution leads to 
the complex line phenomena 
seen in Figure 2.

Time (sec)

Fr
eq

ue
nc

y 
(H

z)

Narrowband Spectrogram

Speech
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Spectral Sensitivity*
Example

• Harmonic speech spectra can 
be quite sensitive to 
aberrations in periodicity of 
the glottal source

• Even small perturbations can 
lead to short-time spectral 
changes that mislead the 
viewer in terms of signal 
composition

We see that the shift in time domain seems 
to move the harmonics in the higher 

frequencies

Example: One-sample shift (0.1 ms)

*We have developed formal spectral for these sorts of effects: To be 
published in January 2008 IEEE TSLP, “Spectral representations of 
nonmodal phonation,” Malyska and Quatieri.
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An Alternate Transform
The Fan-Chirp Transform

• The Fan-Chirp Transform (FChT)
– “Adaptive Chirp-Based Time–Frequency Analysis of Speech 

Signals”
 Marian Kepesia and Luis Weruaga, Speech Communication, vol. 

48, no. 5, pp. 474-492, May 2006.
– “The Fan-Chirp Transform for Non-Stationary Harmonic 

Signals”
 Luis Weruaga and Marian Kepesia, (submitted to Elsevier)

• FChT is a generalization of the Fourier transform
– Fourier transform basis functions are stationary sine waves
– FChT basis functions are sine waves with linear frequency 

modulation
 - the set of basis functions has a fan geometry
 - 1st order match to harmonic frequency modulation in speech
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Spectrogram Comparison
STFT versus Short-Time Fan-Chirp

• Observations
– FChT resolves high frequency harmonics even when 

frequency modulation is large
– Frequency tracks appear as predicted for FChT

Time (sec)

Fr
eq

ue
nc
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z)

Short-Time Fourier Transform
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Short-Time Fan Chirp Transform

MIT Lincoln Laboratory
26

Fan-Chirp for Grating Compression Transform
Pitch Estimation

9 dB  
 
 
 
 
 
 
 
6 dB 
 
 
 
 
 
 
 
3 dB 

STFChT STFT

• Based on preliminary results,  for pitch estimation in noise, the 
short-time Fan-chirp tranform appears to outperform the STFT
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Conclusions 
and Directions 

• The grating compression transform (GCT)  maps harmonically-related signal 
components to a concentrated entity in a spatial 2-D frequency plane

• The GCT forms the basis of a pitch estimator that uses the radial distance to the 
largest peak of the GCT

– The resulting pitch estimator appears robust under noise conditions and amenable to 
extension to two-speaker pitch estimation

• The GCT forms the basis of a formant estimator that exploits separability of speech 
source and vocal tract information via changing pitch

• Although the spectrogram provides a useful starting point for the GCT, alternate 
transforms can provide improved performance

– Fan-chirp transform is one possibility

• Possible GCT directions
– Alternate time-frequency distributions
– Pitch estimation

 Extended evaluation to a larger corpus and use of voiced/unvoiced speech
 Two-speaker pitch estimation 

– Formant estimaiton in noise
– GCT as model of auditory cortical processing (Sthamma, Ezzat, and Poggio)


